a2 United States Patent
Araki

US009116855B2

US 9,116,855 B2
Aug. 25,2015

(10) Patent No.:
(45) Date of Patent:

(54) DATA PROCESSING SYSTEM AND DATA
PROCESSING METHOD

(75) Inventor: Takuya Araki, Tokyo (IP)

(73) Assignee: NEC CORPORATION, Tokyo (JP)

*) Notice: Subject to any disclaimer, the term of this
] y
patent is extended or adjusted under 35
U.S.C. 154(b) by 264 days.

(21) Appl. No.: 13/704,178

(22) PCT Filed: Jun. 10, 2011

(86) PCT No.: PCT/JP2011/003314
§371 (),
(2), (4) Date: Dec. 13,2012

(87) PCT Pub. No.: WO02011/158478
PCT Pub. Date: Dec. 22,2011

(65) Prior Publication Data
US 2013/0091203 Al Apr. 11, 2013
(30) Foreign Application Priority Data
Jun. 17,2010 (JP) ceveviireeccccrecne 2010-138398
(51) Imt.ClL
GO6F 15/16 (2006.01)
GO6F 9/54 (2006.01)
(52) US.CL
CPC ..o GOG6F 15/16 (2013.01); GO6F 9/547

(2013.01)

(58) Field of Classification Search
None
See application file for complete search history.

USER PROGRAM
|

CLIENT LIBRARY

(56) References Cited
U.S. PATENT DOCUMENTS

6,157,960 A * 12/2000 Kaminskyetal. 719/315
2004/0083483 Al 4/2004 Yamamoto et al.
2005/0155044 Al* 7/2005 Broussard etal. 719/330

FOREIGN PATENT DOCUMENTS

JP 11-085519 A 3/1999

JP 11-338704 A 12/1999

JP 2001-337935 A 12/2001

JP 2004-151800 A 5/2004
OTHER PUBLICATIONS

Stevens, W., Richard, “UNIX Network Programming,” Prentice Hall,
Inc., 1st Edition, Jul. 30, 1992, pp. 809-829.

* cited by examiner

Primary Examiner — Scott B Christensen
(74) Attorney, Agent, or Firm — Sughrue Mion, PLLC

(57) ABSTRACT

A client (300) acquires a user function symbol name, acquires
apointer to a wrapper function, which is defined as a template
function and internally executes the user function by desig-
nating the types of argument and return value of the user
function as a template argument, and acquires a wrapper
function symbol name of the wrapper function using the
pointer to the wrapper function. A server (310) acquires, from
the client, the user function symbol name, data corresponding
to the arguments of the user function, the wrapper function
symbol name, and a shared library user program in which the
user program and the wrapper function are compiled as a
shared library. The server executes the wrapper function
within the shared library user program, which is specified by
the pointer to the wrapper function, using the user function
symbol name and the data corresponding to the arguments of
the user function as arguments.

9 Claims, 14 Drawing Sheets

SERVER LIBRARY

| |
201 DESIGNATE AND INITIALIZE SEND SHARED LIBRARY RECEIVE SHARED LIBRARY 221
SHARED [IBRARY USER USER PROGRAM USER PROGRAM

211

REGISTER SHARED LIBRARY 222
USER PROGRAM

POINTER AND ARGUMENT

TRANSFER USER FUNCTION ACQUIRE USER FUNCTION 212
POINTER AND ARGUMENT

r~ "ACQUIRE USER FUNGTION
202 SYMBOL NAME FROM 218
FUNCTION POINTER

/\4 SEND USER FUNCTION RECEIVE USER FUNCTION F\/zzs
SYMBOL NAME AND SYMBOL NAME AND
ARGUMENT

ARGUMENT

214

203

ACQUIRE USER FUNCTION
POINTER FROM USER
FUNCTION SYMBOL NAME

EXECUTE FUNCTION USING
USER FUNCTION POINTER
AND ARGUMENT

I ACQUIRE RETURN VALUE |1—| RECEIVE RETURN VALUE H

SEND RETURN VALUE
OF FUNCTION

220

g 215/\/

US 9,116,855 B2

Sheet 1 of 14

Aug. 25,2015

U.S. Patent

clLL oLl SOL PO L 20L
: / ﬁ / m
/ 3 / |
LINAONILYOINNWNOD - > LINN oZ_Eo_z:s_s_ooJ
t (NOILYZITVILINI ONIINQ) YN T09IAS 1 T
ms_,_\z TJOGWAS ALVHET O3dVHS NOILONNS ¥3sn
NOILONN4 H3sn + . . TRASNETE0Y
LINN ONNINDOY
HALNIOd NOLIONNS ¥3sn JAYN TOGNAS zO+_.523u_ d35N
H3LNIOd AdYHEIT INITO
NOILONN3 ¥3sn A _ i
FlL LNIWNSYY (NQILYZITYILINI
IVA WS90 ¥3sn . wALNIOd ONINNQ)
NIE _mzmz:w% , AdvHaI1 Q3HVHS Nan Em: NOILLONT mum: @«mmmm_m_mmmm
LINNENILNDIXT NOILONNA ¥3Sn WYHOOUd H3sN
AdVLgITYIAYTS WYHO0Hd H3sn
AdYHEIT A3HVYHS
v ﬂ EULEN IN3D
/ / v / / m
SLL LLL LOL cOL
OLL Qo1

US 9,116,855 B2

Sheet 2 of 14

Aug. 25,2015

U.S. Patent

=
ozze™A 3NN ANGS o INTVANYNITY IAFOTH [—» INWANGNITY FHINDOY
+ L F
INFNNSEY ONY /\Wom
.4 HALNIOd NOLLONNA ¥3sN
Sed ONISN NOILONNA 3LND3AX3
*
P27 NOILANN4 YEISh SMINOoY
T L1z
NGNSV INENRGER A~
cz=" N aNY 3N TOGWAS “ ANV JAVYN TOGWAS
NOILONNS 35 JAFOTY NOILONNS ¥3sn aNIs
F +
d3LNIOd NOILONNA
oLz WOY JWYN TOBWAS -
NOILONNA {3SN FHINOoY 02
f ~
o~ LNIANOFY ANV ¥IINIOD | INFWNDHY ANV HIINIOd
zZ1z NOILONNS ¥3SN JHIN0DOY [+ NOILONN4 ¥3SN ¥34SNvHL
L F
WYHO0Ed ¥3sN
zzz” ™ AYvHEN QFEVHS d3LSIDTY Lz "
: ~ A7I00ad
9)
WYHOOUd ¥3SN VOO0 ¥3SN
—~ « " YASN AUYEAN G3UVHS
\ZZ AUYHEIT GFIYHS FAFOTY AdvddlT GIUvHS aN3S VLN ANy 3veisaa N oE
_ _ _
Advdgi1 d3AdaS AdvdgIT INSD AYHS0Ed ¥3SN

US 9,116,855 B2

Sheet 3 of 14

Aug. 25,2015

U.S. Patent

& W e GO m__nfv e
/ i
r
LINM ONILYDINNIWNGD - > LINN ONILYOINIINROD
(NOILYZITVILINI f F 7
mag I TR ONHNG) h q JWVN TOGWAS IWVN TOGWAS
NaNL3Y N | Avvaan ORivhs 0B ™[nnovzwamsan] VOLRY NOILONNA
SEPATINES ! + %33 NERmOT
MG NG L S svaian ELE !
|\‘.II
soetT TN LNnonzivaas |
LN NOTLONT 12 1 5
1IN ONIZIND0V SAVN
SELERENT @Dw\\\l//l_ RS NOION Ficvin |
INYN TOANAS WYHO0Nd 435N
GBS SEREEN | e
| +
3 _ _ [t
TINT ONIIINO0Y JAVN
TINN ONTHINTOY 1A §
Il | i sn | | lvoeT T ™11 JOINAS MOILONS 5350 |
(ONMIdWCO ONIMNA)
/gt LNn oNZTviiEsao | /.\) NOILYNION SdAL
g0 LINNONZITyIas | [INFANDAY NALNIOd gL AdvHdn Em:“o
NOILONNA Y33
INVANINLTY | fi INVA INFNNDUY (NOILVZITWLLINI,
Nanl3d H3LNIOd WyHoONd 33sn
61 m\){_ LINM ONILNO3X3 NOILONTA ¥3ST _ | NOILONIA 333N AVHEMN A307HS
LIN ONILNG3X3 NOILONNS ¥3dd Ve WYHO0Yd ¥3SN
\ AdVHaIN ¥IAYIS OO 35
/ A YIAHTS ASvHaIT 43EVHS INITO
w w LaE m
clLe LLE ole 208 ode

US 9,116,855 B2

Sheet 4 of 14

Aug. 25,2015

U.S. Patent

FLt
P
| nwAnunEY cIZvuas 3zvasia | INTYANYNLTY TUINDDY |
1 ~ %
ey INTVA NdNL3Y 03Z1TW193S ON3S —| ANTvA NNLTY 021 TVIYES INE0TY 7 £0>
4 * ./(\./
NOILONNA d3dd VM NIHLIM NOILONN A S
B2 e ¥I5N 40 INTVA NUNLTY 371935
+
NOILONNA Y3ddvam
NIHLIM NOILONRS 3350 31n23x3
gav ¥
NOILONNA H3dd VM
NIHLIM LNIANSHY LoNdLSNOOTY
L2H" ™ OL INIWNDYY 03ZNViy3s 321 Teld3s3a
+
NOILONNA d3ddvam
97 b NIHLIM JWYN TOBWAS NOILLONNS ¥3sn
WOH4 "3 LNIOd NOILONNA 435N IHINDOY JWYN TOFHAS NOLLONNS H3ddWaM “ INIHNOYY L.~ /b
X A3ZIYIN3S NN TOFNAS NOILONNS ¥3sN NS
A oy U TS NOLANDY 4380 *
St
H3LNIO NOILONNS H3ddVMINOHE FAVN P
ONISN NOILONAS an_n_éz 31M03x3 TOBWAS NOILONNS 3ddvui Taindov iy
AN TORWAS NOTLONIA Haddvem Noad 4
¥2¥ Y3 INIOd NOILONNA d3dd v WINDDV | ¥3INIOd NOLLONNA H3ddviM TINDOY for~ 4 | 4
£ ¥
IAVN T0GNAS
NOILONNS Y3ddvuM INFNNOYY 0371 WIN3S je— # LNINNOYY 321 VI35 o~ s
2™ 3NN T0GWAS NOILLONNA d35N JAI30TY F
1 YALNIOA NOLLONNS WOHA YN .
T0GWAS NOILONNA 338N FINDOY I P
1 INFANDNY ONY
] INIHNOHY ONY -
va/\./ Lt LN SO ONY MALNIOd zo_EzEwmw: UIASNYHL
F 9
—
_ IWYIO0Hd Y3SN AVHE T 0THYHS $315193Y _ bt LO=
_ YOO YISN AYVHEI 03YVHS IAFOTY _A|_ NYHO0Yd HISN AHYHE THVHS ANIS _A‘ oum%pmw_%%w_ﬁ w__m_m%z&m%w_%_,__w_mmo
| _ T
) mw\ﬂ\ AV 43AN3S AdvYET NI WYYO0Hd ¥3SN

¥ Old

U.S. Patent Aug. 25, 2015 Sheet 5 of 14 US 9,116,855 B2

FIG. 5
500 501 > 511
CLIENT < SERVER <
| COMPUTER \ | COMPUTER |

_ L

STORAGE MEDIUM STORAGE MEDIUM

(C

507 512

U.S. Patent Aug. 25, 2015 Sheet 6 of 14 US 9,116,855 B2

FIG. 6

int userfunc1(int x){return x * 2;} // THESE ARE CALLED BY SERVER
int userfunc2(int x){return x * x;} // NUMBER AND TYPE OF ARGUMENTS AND TYPE OF RETURN
VALUE ARE FIXED
main(}{
Node server = ... /I INFORMATION ON SERVER IS ACQUIRED
init(server, "userprogram.so”); // "userprogram.so" IS SHARED LIBRARY USER PROGRAM
int r1 = rpc(server, userfunct, 1); //r1 =2
int r2 = rpc(server, userfuncz, 2); //r2=4

}

U.S. Patent Aug. 25, 2015 Sheet 7 of 14 US 9,116,855 B2

FIG. 7

init(Node server, char* filename){

int s = connect_to_server(server); {1 CONNECT TO SERVER
int bufsize = read_from_file(buf, filename); // READ SHARED LIBRARY USER PROGRAM
write_to_socket(s, buf, bufsize); #/ SEND SHARED LIBRARY USER PROGRAM TO SERVER
close_connection(s);

}

char* get_symbol(void* f){
Dl_info info;

dladdr(f, &info)
return info.dli_sname;

}

int rpc(Node server, int(*f)(int), int arg){
char* symbol = get_symbol({viod*)f); /I ACQUIRE USER FUNCTION SYMBOL NAME
int s = connect_to_server(server); // CONNECT TO SERVER

write_to_socket(s,symbol,strlen(symbol)); // SENDUSER FUNCTION SYMBOL NAME TO SERVER
write_to_socket(s,(char*)&arg,sizeof(int)); // SEND ARGUMENT TO SERVER
read_from_socket(s,buf); /I RECEIVE RETURN VALUE FROM SERVER

int ret = *((int*)buf);

close_connection(s);

return ret;

U.S. Patent Aug. 25, 2015 Sheet 8 of 14 US 9,116,855 B2

FIG. 8

main(){
int s = accept_connection(); /{ ACCEPT CONNECTION FROM CLIENT
Int bufsize = read_from_socket(s,buf); // RECEIVE SHARED LIBRARY USER PROGRAM

write_to_file("tmp/Ampfile.so”, buf, bufsize); // WRITE SHARED LIBRARY USER PROGRAM TO FILE
void* handle = dlopen{“Amp/tmpfile.so” RTLD_LAZY);
close_connection(s);

while(1){
s = accept_connection(); // ACCEPT CONNECTION FROM CLIENT
read_from_socket(s,symbol); /f RECEIVE USER FUNCTION SYMBOL NAME
read_from_socket(s buf); /I RECEIVE ARGUMENT

int arg = *(int*)buf;

H# "unctype” IS TYPE OF POINTER TO FUNCTION THAT TAKES "int" AS ARGUMENT AND RETURNS "int"
typedef inl(*lunctype)(int);

functype T = (functype)disym(handle, symbol),;

int ret = f(arg); i EXECUTE FUNCTION

write 1o socket(s,(char*)&ret sizeof(int)); // SEND RETURN VALUE
close_sockel(s);

U.S. Patent Aug. 25, 2015 Sheet 9 of 14 US 9,116,855 B2

FIG. 9

int userfunc1(int x){return x * 2;} /I THESE ARE CALLED BY SERVER
double userfunc2{double x, double y){return x * y;} // NUMBER AND TYPE OF ARGUMENT AND TYPE OF
RETURN VALUE ARE OPTIONAL
main{){
Node server= ...

init(server, “userprogram.so”™;
int r1 = rpe(server, userfunct, 1); // r1 = 2 {SINCE THIS CAN BE INFERRED BY COMPILER, ITISNOT
NECESSARY TO DESIGNATE AS "rpe<int, int>" OR LIKE)

double r2 = rpc(server, userfunc2,2.0,3.0); /i2=6.0
}

U.S. Patent Aug. 25, 2015 Sheet 10 of 14 US 9,116,855 B2

FIG. 10

template <class R, class T1>

void wrapper(char* symbol, void* handle, binary_iarchive input, binary_oarchive* output){
typedef R(*unctype)(T1);

functype f = (functype)dlsym(symbol, handle);
T1 al; R ret;

input >> at; /1 DESERIALIZE ARGUMENT
ret = f(a1);
*output << ret; // SERIALIZE RETURN VALUE

U.S. Patent Aug. 25, 2015 Sheet 11 of 14 US 9,116,855 B2

FIG. 11

template <class R, class T1>
R rpc{Node server, R()(T1),T1 a1){
void(*wrapper_ptr)(char*,void*,binary_iarchive,binary_oarchive*) = wrapper<R,T1%>;// ACQUIRE WRAPPER

FUNCTION POINTER
char* wrapper_symbol = get_symbol({void*)wrapper_ptr); // ACQUIRE WRAPPER FUNCTION SYMBOL NAME
char* symbol = get_symbol({void*)f); A ACQUIRE USER FUNCTION SYMBOL NAME

ostringstream os;
binary_oarchive input(os);

input == af; {1 SERIALIZE ARGUMENT

int s = connect_to_server(server); /1 CONNECT TO SERVER
write_to_socket(s, symbol strlen(symbal)); # SEND USER FUNCTION SY MBOL NAME
write_to_socket(s,os.str().c_str(),0s.str().length()); /f SEND SERIALIZED ARGUMENT
write_to_socket(s,wrapper_symbol,strlen(wrapper_symbol)); # SEND WRAPPER FUNCTION SYMBOL NAME
read from_socket(s,buf); /{ RECEIVE SERIALIZED RETURN VALUE

istringstream is(string{buf));

binary_iarchive output(is);

R ret;

output >> ret; /I DESERIALIZE RETURN WALUE
close_connection(s);

return ret;

U.S. Patent Aug. 25, 2015 Sheet 12 of 14 US 9,116,855 B2

FIG. 12

template <class R, class T1, class T2> // NUMBER OF TEMPLATE ARGUMENT IS THREE
void wrapper{char* symbol, void* handle, binary_oarchive input, binary_oarchive* output){
typedef R(*functype)(T1, T2); {/ NUMBER OF ARGUMENTS IS DIFFERENT
functype f = (functype)disym(symbol, handle);
T1a1, T2 a2, Rret;
input >> at; input >>a2; // DESERIALIZE TWO ARGUMENTS

ret = f(a1, a2); {/ EXECUTE FUNCTIONS OF TWO ARGUMENTS
*output << ret;

U.S. Patent Aug. 25, 2015 Sheet 13 of 14 US 9,116,855 B2

FIG. 13

template <class R, class T1, class T2> /f NUMBER OF TEMPLATE ARGUMENTS IS THREE
R rpe{Node server,R(*()(T1, T2), T1 a1, T2 a2){ // NUMBER OF ARGUMENTS OF FUNCTION IS TWO
void(*wrapper_ptr)(char* void* binary_iarchive,binary_oarchive*) = wrapper<R,T1,T2=;// NUMBER OF TEMPLATE
ARGUMENTS IS THREE
char* wrapper_symbol = get_symbol(tvoid*)wrapper_ptr);
char* symbol = get_symbol((void*)f);
ostringstream os;
binary_oarchive input(os);
input << a1t <<a2; /I SERIALIZE TWO ARGUMENTS
int s = connect_to_server(server);
write_to_socket(s,symbol,strlen(symbol));
write_to_socket(s,0s.str().c_sir(},0s.str().length()); 0;
write_to_socket(s,wrapper_symbol strlen{wrapper_symbal
read_from_socket(s,buf);
istringstream is(string(buf));
binary_iarchive output(is);
R rei;
output >> ret,
close_connection(s);
return ret;

US 9,116,855 B2

Sheet 14 of 14

Aug. 25,2015

U.S. Patent

IN3IMO OL 1INS3H NOILNOIXINANLIL /f
NOILINNS H3ddvdit ALNO3X3T /7

i{shuonosuuod 8s0|o

{(Oybusy Qs so Qs o' (ys'so's)|eyo0s 0] sjlum
‘(indinog ndur'spuey’joquiisiiaddeim
{(so)indino salyoneo” Aleulq

‘s0 wesnsbuyiso

HALNIOd NOILONNA H3ddvdm IHIN0OY /7 (@Ipuey ‘joquis Jaddeim)wAis|p(adApaddein) = 1addeim adApaddelm
‘(,oMyoIro Aleuiqg ‘aayalel Aleulq', ploa’, 1eya)(adAladdels,)pioa jopoadA)

NOILONNS H3ddvdM 0 FANWN TOBWAS NI¥1E0 /

INFNNOHY A3ZIM¥I43S FHIN0DY /7
JNWN TOFWAS NOILONNS 435N 3HINDOY /7
INAITD WO¥A NOILOINNOD Ld300V //

{|oquiAs™ 1addelm's)]e)00s WOl pesl
{snindul sayolel” Areurq
{((ng)Buunys)si wealjsbuLis|
'(Jng ‘s)19)j00s W0y peal
{(loquiAs ‘s)jeno0s woly peal
Quonosuuos jdasoe = s

H)aiym

{(s)uonosuuo Bs00
HAZvT a1Ly'.08 epydwyduy, Juadolp = s|puey ,pioa
‘(z184nq ‘Jnq * 0s'3)yduwn/duwyy,)31y o) Bim
‘(Jng‘s)ieyoos Woly peal = azisjng ju)
‘Quonosuucs ydeooe = < Jul

Ouew

vl Old

US 9,116,855 B2

1
DATA PROCESSING SYSTEM AND DATA
PROCESSING METHOD

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a National Stage of International Appli-
cation No. PCT/JP2011/003314, filed on Jun. 10, 2011,
which claims priority from Japanese Patent Application No.
2010-138398, filed on Jun. 17, 2010, the contents of all of
which are incorporated herein by reference in their entirety.

TECHNICAL FIELD

The present invention relates to a data processing tech-
nique of executing parallel distributed processing by connect-
ing a plurality of computing devices through a network.

BACKGROUND ART

In recent years, parallel distributed processing is per-
formed in which a plurality of servers, which are connected
through a network, performs programs in parallel.

When such parallel distributed processing is performed,
since it is complicated for a programmer to directly describe
communication processes, a Remote Procedure Call (RPC) is
often used. The RPC implements a way of calling a procedure
on a separate server connected through a network in the same
manner of writing as a general procedure call.

Due to this, the programmer uses descriptions similarly to
procedure calls rather than directly describing complicated
communication processes in order to perform a parallel dis-
tributed processing by making another server connected
through a network perform a process, or data transfer.

An example of a RPC system is disclosed in Non-Patent
Document 1 below. In this RPC system, a procedure interface
that is called with a RPC is described in a certain special
language.

This language is sometimes called an Interface Description
Language (IDL). Here, the content described in the IDL
includes the name of a called function, the number and the
type of arguments, the type of a return value, and the like.

When the IDL is compiled by an IDL compiler, programs
described in the C-language called client stub and server stub
are generated. In a client stub and a server stub, processes
such as communication for performing a procedure call on a
separate server connected through a network are described.
That is, a definition of a function described in an IDL is
described as a server-side program, and the function is linked
to a server stub.

Then, this program is executed in advance on the server
side. A program that calls a function described in an IDL is
described as a client-side program, and the function is linked
to a client stub. When the client-side program is executed, the
program is connected to a server side at a point in which the
program calls a function described in an IDL, and the function
is executed at the server side.

Another example of an RPC system of the related art is
disclosed in Patent Document 1 below. This RPC system of
the related art uses Java (registered trademark) languages and
programs corresponding to a client stub and a server stub are
automatically created by scanning compiled bytecodes. Due
to this, a description of an IDL is not necessary.

Moreover, Patent Document 2 below discloses a technique
related to an RPC of a client server, in which various libraries
are stored in advance in library memory of the server, infor-
mation on a function name argument is sent from the client to

10

15

20

25

30

35

40

45

50

55

60

65

2

the server, and the server reads a library program correspond-
ing to the information from the memory, executes the library
program, and returns the execution result to the client.

RELATED DOCUMENT
Patent Document

Patent Document 1: Japanese Patent Application Publication
NO. H11-085519

Patent Document 2: Japanese Patent Application Publication
NO. H11-338704

Non-Patent Document

Non-Patent Document 1: W. Richard Stevens, “UNIX Net-
work Programming” translated by Shinoda Youichi, 1st
Edition, Jul. 30, 1992, pp. 809-829 (UNIX is a registered
trademark)

SUMMARY OF THE INVENTION

In the system disclosed in Non-Patent Document 1, it is a
burden for programmers to describe IDL in order to use RPC.
The reason for this is because in the case of using IDL, the
programmers need to learn IDL, which is a different language
from a language used for describing a program.

Moreover, when the number and type of arguments of a
function that is called with RPC, the type of the return value,
and the like are changed, the programmers need to change the
IDL and guarantee consistency between them. Further, when
the programmers want to call a new function using the RPC,
the IDL also needs to be changed.

In the system disclosed in Patent Document 1, although
there is no burden to describe an IDL, the program language
that can be used is limited to Java (registered trademark) or
the like. The reason for this is because the system disclosed in
Patent Document 1 is considered that it scans compiled byte-
codes in order to obtain information on programs such as the
number and type of arguments, the type of a return value, and
the like.

The bytecodes output by a compiler of a language such as
Java (registered trademark) are not converted up to native
codes, and thus the processing speed thereof is generally
slower than that of a language that is compiled to native codes
such as C or C++, although the bytecodes contain a large
amount of information. Thus, it is not possible to use the
method disclosed in Patent Document 1 in a case that a higher
speed language, such as C or C++ that compiles to native
codes, is used.

Since the technique of Patent Document 2 assumes opera-
tions in an operating system (OS) level, it is necessary to
change the OS in order to implement the technique. Further,
since there is no specific and detailed description of a method
of'acquiring the “function name argument” on the client side
and allowing the server to receive the argument and execute
the function, a way of the implementation is not clear.

Moreover, the existing system needs to describe a client-
side program and a server-side program as separate programs,
which is a burden to programmers. The reason for this is
because when a RPC is used in order to improve the speed
through parallel distributed processing, it is less burdensome
for programmers if a program that executes distributed execu-
tion processing can be described in a form that is close to a
program that is executed on one machine (a program that does
not use the RPC) than if it cannot be. In the existing system,

US 9,116,855 B2

3

a portion that is executed in a distributed manner needs to be
separately treated as a server-side program, which is a burden
to programmers.

The present invention has been made in view of the prob-
lems described above, and the present invention provides a
data processing technique for allowing functions having vari-
ous types of arguments and return values to be executed on
another computer device according to an instruction from a
certain computer device without increasing development bur-
den.

Respective aspects of the present invention employ the
following configurations in order to solve the above prob-
lems.

According to a first aspect of the present invention, there is
provided a data processing system in which a client and a
server communicate with each other, the client including: a
user function symbol name acquiring unit that acquires a user
function symbol name of an object pointed by a pointer to a
user function included in a user program; a wrapper function
pointer acquiring unit that acquires a pointer to a wrapper
function that is defined as a template function and internally
executes the user function by designating the types of argu-
ment and return value of the user function as a template
argument; and a wrapper function symbol name acquiring
unit that acquires a wrapper function symbol name of the
wrapper function using the pointer to the wrapper function,
and the server including: a communicating unit that acquires,
from the client, the user function symbol name, data corre-
sponding to the argument of the user function, the wrapper
function symbol name, and a shared library user program in
which the user program and the wrapper function are com-
piled as a shared library; a wrapper function pointer acquiring
unit that acquires the pointer to the wrapper function using the
wrapper function symbol name acquired by the communicat-
ing unit; and a wrapper function executing unit that executes
the wrapper function, which is within the shared library user
program and specified by the pointer to the wrapper function,
using, as an argument, the user function symbol name and the
data corresponding to the argument of the user function,
which acquired by the communicating unit.

According to a second aspect of the present invention, there
is provided a computer device including: a user function
symbol name acquiring unit that acquires a user function
symbol name of an object pointed by a pointer to a user
function included in a user program; a wrapper function
pointer acquiring unit that acquires a pointer to a wrapper
function that is defined as a template function and internally
executes the user function by designating the types of argu-
ment and return value of the user function as a template
argument; a wrapper function symbol name acquiring unit
that acquires a wrapper function symbol name of the wrapper
function using the pointer to the wrapper function; and a
communicating unit that sends, to another computer device,
the user function symbol name, data corresponding to the
argument of the user function, the wrapper function symbol
name, and a shared library user program in which the user
program and the wrapper function are compiled as a shared
library.

According to a third aspect of the present invention, there is
provided a computer device including: a communicating unit
that acquires, from another computer device, a shared library
user program in which a user program and a wrapper function
that is defined as a template function and internally executes
a user function included in the user program are compiled as
a shared library, a user function symbol name, data corre-
sponding to an argument of the user function, and a wrapper
function symbol name; a wrapper function pointer acquiring

10

15

20

25

30

35

40

45

50

55

60

65

4

unit that acquires the pointer to the wrapper function using the
wrapper function symbol name acquired by the communicat-
ing unit; and a wrapper function executing unit that executes
the wrapper function, which is within the shared library user
program and specified by the pointer to the wrapper function,
using, as an argument, the user function symbol name and the
data corresponding to the argument of the user function
acquired by the communicating unit.

According to a fourth aspect of the present invention, there
is provided a program executed by a client and a server that
communicate with each other, the program causing the fol-
lowing to be implemented in the client: a user function sym-
bol name acquiring unit that acquires a user function symbol
name of an object pointed by a pointer to a user function
included in a user program; a wrapper function pointer
acquiring unit that acquires a pointer to a wrapper function
that is defined as a template function and internally executes
the user function by designating the types of argument and
return value of the user function as a template argument; and
a wrapper function symbol name acquiring unit that acquires
a wrapper function symbol name of the wrapper function
using the pointer to the wrapper function, and the program
causing the following to be implemented in the server: a
communicating unit that acquires, from the client, the user
function symbol name, data corresponding to the argument of
the user function, the wrapper function symbol name, and a
shared library user program in which the user program and the
wrapper function are compiled as a shared library; a wrapper
function pointer acquiring unit that acquires the pointer to the
wrapper function using the wrapper function symbol name
acquired by the communicating unit; and a wrapper function
executing unit that executes the wrapper function, which is
within the shared library user program and specified by the
pointer to the wrapper function, using, as an argument, the
user function symbol name and the data corresponding to the
argument of the user function acquired by the communicating
unit.

According to a fifth aspect of the present invention, there is
provided a data processing method executed between a client
and a server that communicate with each other, the method
allowing the client to execute: acquiring a user function sym-
bol name of an object pointed by a pointer to a user function
included in a user program; acquiring a pointer to a wrapper
function that is defined as a template function and internally
executes the user function by designating the types of argu-
ment and return value of the user function as a template
argument; and acquiring a wrapper function symbol name of
the wrapper function using the pointer to the wrapper func-
tion, and the method allowing the server to execute: acquir-
ing, from the client, the user function symbol name, data
corresponding to the argument of the user function, the wrap-
per function symbol name, and a shared library user program
in which the user program and the wrapper function are
compiled as a shared library; acquiring the pointer to the
wrapper function using the wrapper function symbol name;
and executing the wrapper function, which is within the
shared library user program and specified by the pointer to the
wrapper function, using, as an argument, the user function
symbol name and the data corresponding to the argument of
the user function.

The respective components of the present invention may be
formed so as to implement the functions. For example, the
components can be implemented as dedicated hardware that
performs a predetermined function, a data processing device
in which a predetermined function is provided by a computer

US 9,116,855 B2

5

program, a predetermined function that is implemented in a
data processing device by a computer program, and any com-
bination of these functions.

Moreover, the respective components of the present inven-
tion may not be independent entities. A plurality of compo-
nents may be formed as one member, one component may be
formed as a plurality of members, a certain component may
be a part of another component, and a part of a certain com-
ponent may overlap with a part of another component.

Moreover, the computer program and the data processing
method of the present invention describes a plurality of pro-
cesses and operations in order. However, the order of execut-
ing the plurality of processes and the plurality of operations is
not limited to the described order. Thus, when the computer
program and the data processing method of the present inven-
tion are implemented, the order of the plurality of processes
and the plurality of operations can be changed unless it causes
a problem in terms of content.

Further, in the computer program and the data processing
method of'the present invention, the plurality of processes and
the plurality of operations are not limited to being executed
individually in different points in time. Thus, another process
or operation may occur during execution of a certain process
or operation, and the execution time of another process or
operation may partially or wholly overlap with the execution
time of a certain process or operation.

Moreover, the data processing device of the present inven-
tion can be implemented as hardware constructed with gen-
eral-purpose devices such as a CPU (Central Processing
Unit), ROM (Read Only Memory), RAM (Random Access
Memory), and an I/F (Interface) unit so as to read a computer
program to execute the corresponding processing operation, a
dedicated logical circuit constructed to execute a predeter-
mined processing operation, and combinations thereof.

According to the respective aspects described above, it is
possible to provide a data processing technique for allowing
functions having various types of arguments and return values
to be executed on another computer device according to an
instruction from a certain computer device without increasing
development burden.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating a configuration
according to a reference example of the present invention.

FIG. 2 is a flowchart illustrating an operation according to
the reference example of the present invention.

FIG. 3 is a block diagram illustrating a configuration
example according to a first embodiment of the present inven-
tion.

FIG. 4 is a flowchart illustrating an operation example
according to the first embodiment of the present invention.

FIG. 5 is a block diagram illustrating a configuration
example according to a second embodiment of the present
invention.

FIG. 6 is a schematic view illustrating a user program
according to a first example of the present invention.

FIG. 7 is a schematic view illustrating a client library
according to the first example of the present invention.

FIG. 8 is a schematic view illustrating a server library
according to the first example of the present invention.

FIG. 9 is a schematic view illustrating a user program
according to a second example of the present invention.

FIG. 10 is a schematic view illustrating a wrapper function
for a user function having one argument in a client library
according to the second example of the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 11 is a schematic view illustrating an “rpc” function
for a user function having one argument in the client library
according to the second example of the present invention.

FIG. 12 is a schematic view illustrating a wrapper function
for a user function having two arguments in the client library
according to the second example of the present invention.

FIG. 13 is a schematic view illustrating an “rpc” function
for a user function having two arguments in the client library
according to the second example of the present invention.

FIG. 14 is a schematic view illustrating a server library
according to the second example of the present invention.

DESCRIPTION OF EMBODIMENTS
Reference Example

First, a reference example of the present invention will be
described with reference to FIGS. 1 and 2. As illustrated in
FIG. 1, a data processing system according to the reference
example of the present invention includes a client 100 and a
server 110.

The client 100 includes a user program 101, a client library
103, and the like. The user program 101 includes a shared
library user program 102. The client library 103 includes a
user function symbol name acquiring unit 104 and a commu-
nicating unit 105.

The server 110 includes a server library 111. The server
library 111 includes a communicating unit 112, a user func-
tion pointer acquiring unit 113, a user function executing unit
115, and the like. The server library 111 stores a shared library
user program 114 acquired from the client 100 in a form such
that the shared library user program 114 can be accessed from
the user function pointer acquiring unit 113.

These units operate schematically in the following manner.
The user describes the user program 101 and links the user
program 101 and the client library 103. The same client
library 103 and server library 111 are used regardless of the
user program 101.

Moreover, when the user program 101 is compiled, the
compiled user program 101 is also stored as a shared library.
This is referred to as the shared library user program 102.

First, initialization is performed within the user program
101. During this initialization, the user program 101 transfers
the shared library user program 102 to the client library 103
and sends the shared library user program 102 to the server
110 through the communicating unit 105. The server 110
receives the shared library user program with the communi-
cating unit 112 and stores the received shared library user
program in the server library 111 as the shared library user
program 114.

After the initialization, the user program 101 performs an
instruction to call a function on the side of the server 110. This
function is hereinafter referred to as a user function. Here, the
user program 101 transfers a pointer to the user function that
is to be called and the argument thereof to the client library
103.

In the client library 103, the user function symbol name
acquiring unit 104 acquires a user function symbol name ofan
object pointed by the user function pointer. This acquisition
process can be implemented using a “dladdr” function in the
case of Linux, for example.

The client library 103 sends the symbol name and the given
argument to the server 110 through the communicating unit
105. The server 110 receives these items of data through the
communicating unit 112.

The server 110 transfers the symbol name of the user
function to the user function pointer acquiring unit 113. The

US 9,116,855 B2

7

user function pointer acquiring unit 113 acquires a pointer to
the user function to be called using the user function symbol
name and the shared library user program 114 acquired dur-
ing the initialization. In the case of Linux, for example, this
acquisition process can be implemented by opening a shared
library using a “dlopen” function to obtain a handle and
calling a “dlsym” function using the obtained handle and a
user function symbol name as an argument.

The user function executing unit 115 executes the user
function using the user function pointer and the argument.
The user function executing unit 115 sends a return value of
the execution result to the client 100 via the communicating
unit 112.

The client library 103 receives the return value of the
execution result of the function via the communicating unit
105. The client library 103 returns the received return value to
the user program 101. By doing so, it is possible to execute a
designated function on the server 110 side according to an
instruction from the client 100.

Next, an overall operation of this reference example will be
described in detail with reference to FIGS. 1 and 2. First, the
user program 101 designates the shared library user program
102 and executes initialization (step 201 of FIG. 2).

Due to this, the client library 103 sends the shared library
user program 102 to the server 110 (step 211). The server
library 111 receives the shared library user program (step
221) and registers the received shared library user program in
the server library 111 (step 222).

Subsequently, the user program 101 transfers a user func-
tion pointer and an argument to the client library 103 in order
to execute a user function at the server 110 (step 202). The
client library 103 receives these (step 212) and acquires the
user function symbol name using the user function pointer
(step 213). The client library 103 sends the obtained user
function symbol name and argument to the server 110 (step
214).

The server library 111 receives the user function symbol
name and the argument (step 223) and acquires the user
function pointer from the user function symbol name and the
shared library user program 114 registered therein (step 224).
The server library 111 executes the user function using the
user function pointer and the argument (step 225) and sends
the return value of the execution result to the client library 103
(step 226).

The client library 103 receives the return value (step 215)
and returns the received return value to the user program 101
(step 203). By repeating steps 202 to 203, the user program
101 can execute the function multiple times on the server 110
side.

First Embodiment

Next, a first embodiment of the present invention will be
described in detail with reference to FIGS. 3 and 4.

However, in the reference example described above, the
number and type of arguments of the function executed on the
server 110 side and the type of return value are not be able to
be designated, and are therefore fixed. The reason for this is
because the information on the number and the type of argu-
ment of a function is not be able to be obtained just by
acquiring the function pointer with the user function pointer
acquiring unit 113. The first embodiment solves this problem.

Asillustrated in FIG. 3, a data processing system according
to the firstembodiment includes a client 300 and a server 310.
The client 300 and the server 310 communicate with each
other.

20

30

40

45

50

55

8

The client 300 includes a user program 301 and a client
library 303. The user program 301 includes a shared library
user program 302. The shared library user program 302 is
obtained by compiling the user program 301 as a shared
library.

The client library 303 includes a user function symbol
name acquiring unit 304, a wrapper function pointer acquir-
ing unit 305, a wrapper function symbol name acquiring unit
306, a serializing unit 307, a deserializing unit 308, a com-
municating unit 309, and the like.

The user function symbol name acquiring unit 304
acquires a user function symbol name of an object pointed by
a pointer to a function. The wrapper function pointer acquir-
ing unit 305 acquires a pointer to a wrapper function that is
defined as a template function and internally executes the user
function, by designating the types of argument and return
value of the user function as the template argument. The
wrapper function symbol name acquiring unit 306 acquires a
wrapper function symbol name using the pointer to the wrap-
per function.

The server 310 includes a server library 311. The server
library 311 includes a communicating unit 312, a wrapper
function pointer acquiring unit 313, a wrapper function
executing unit 315, and the like. The communicating unit 31
acquires, from the client 300, the user function symbol name,
data corresponding to the argument of the user function, the
wrapper function symbol name, and a shared library user
program that is composed of the user program and the wrap-
per function compiled as a shared library, for example. The
wrapper function pointer acquiring unit 313 acquires a
pointer to the wrapper function using the wrapper function
symbol name acquired by the communicating unit 31.

The wrapper function executing unit 315 includes a user
function pointer acquiring unit 316, a user function executing
unit 319, a deserializing unit 317, a serializing unit 318, and
the like. The wrapper function executing unit 315 executes
the wrapper function based on the user function symbol name
and a serialized argument of the user function using these
respective processing units.

The server library 311 stores the shared library user pro-
gram 314 acquired from the client 300 in a form such that the
shared library user program 314 can be accessed from the
wrapper function pointer acquiring unit 313 and the user
function pointer acquiring unit 316. The user function pointer
acquiring unit 316 acquires a user function pointer to the user
function to be called using the user function symbol name and
the shared library user program 314 acquired during the ini-
tialization. The user function executing unit 319 executes the
user function using the user function pointer and the argu-
ment.

Before describing the operation of the data processing
system according to the first embodiment, a “wrapper func-
tion” different from that of the reference example described
above will be described. By using this “wrapper function,” it
is possible to execute a user function having an optional type
of argument and return value.

For implementation of a wrapper function, the present
embodiment uses the program languages, such as C++, that
can describe functions using generic programming functions
(hereinafter, referred to as templates because such functions
are called templates in C++) and in which functions with
designated types are generated when compiled.

For example, ifa template of C++ is used, a function can be
described as below.

template <class T>

T add (T a, T b) {return a+b;}

US 9,116,855 B2

9

When there is such a function definition, and the functionis
described as add <double> (1.0, 2.0), a function “add” of
which the data type “T” is “double” can be used.

This is implemented when a compiler internally and auto-
matically generates a function such as double add_double
(double a, double b) {return a+b;}.

Using such a function, the first embodiment introduces a
“wrapper function” that internally calls a user function as a
template function. The types of argument and return value of
the user function are defined as the template argument
thereof.

The argument and return value of the wrapper function
itself are assumed to be fixed without being dependent on
these types. Thus, the wrapper function itself can be called on
the server 310 side by the same method as the reference
example described above. On the other hand, the wrapper
function uses the types of argument and return value of a user
function for executing the user function according to the types
of'the argument and the return value. As a result, it is possible
to execute the user function having an optional type of argu-
ment and return value.

The wrapper function takes the symbol name of the user
function and the serialized arguments of the user function as
arguments of the wrapper function, and returns the serialized
return value of the user function as the return value of the
wrapper function. The return value of the wrapper function
may be returned using a pointer acquired as an argument. In
the following description, an example in which the return
value of the wrapper function is returned as a return value will
be used.

Here, serialization is an operation of converting a plurality
of variables into one byte string or the like. An operation of
reconstructing an original variable from a serialized byte
string or the like is called deserialization. The wrapper func-
tion deserializes and reconstructs the arguments of the user
function from serialized data using a type designated in the
template argument.

Similarly, the wrapper function acquires, by using the type
designated as the template argument, the function pointer of
the user function according to the type thereof. Moreover, the
wrapper function executes the user function using the func-
tion pointer and the argument. The return value of the execu-
tion result of the user function is serialized and is returned as
the return value of the wrapper function.

Such a wrapper function is generated by a compiler in a
portion of the wrapper function pointer acquiring unit 305
that acquires the pointer to the wrapper function according to
the template argument. Thus, the wrapper function is also
included in the shared library user programs 302 and 314.

The operation of the first embodiment will be described
assuming that such a wrapper function is defined. First, simi-
larly to the reference example described above, the user
describes the user program 301, the user program 301 and the
client library 303 are linked.

Here, a portion of the client library 303 is defined as the
template function described above. For example, in the case
of C++, the portion is defined in a header file and is also used
during compiling.

Similarly to the reference example described above, when
the user program 301 is compiled, the compiled user program
301 is also stored as a shared library. This is referred to as the
shared library user program 302.

First, similarly to the reference example described above,
initialization is performed within the user program 301. Dur-
ing this initialization, the user program 301 transfers the
shared library user program 302 to the client library 303, and
sends the shared library user program 302 to the server 310

25

30

40

45

50

55

10

via the communicating unit 309. The server 310 receives the
shared library user program with the communicating unit
312, and stores the received shared library user program in the
server library 311 as the shared library user program 314.

Next, the user program 301 transfers the user function
pointer and the argument to the client library 303 similarly to
the reference example. Here, the function of the client library
303 to be called is implemented as a template function and
takes the types of argument and return value of the user
function as a template argument.

In the client library 303, the user function symbol name
acquiring unit 304 acquires the symbol name of an object in
an object file, pointed by the user function pointer. In the
client library 303, the serializing unit 307 performs serializa-
tion on the argument given from the user program 301.

Further, the wrapper function pointer acquiring unit 305
designates the types given to the client library 303 as the
template argument, and acquires the wrapper function
pointer. Moreover, the wrapper function symbol name acquir-
ing unit 306 acquires the symbol name of the wrapper func-
tion using the wrapper function pointer.

The communicating unit 309 transfers the wrapper func-
tion symbol name, the user function symbol name, and the
serialized argument to the server 310. The server 310 receives
these via the communicating unit 312.

In the server 310, the wrapper function pointer acquiring
unit 313 acquires the wrapper function pointer using the
wrapper function symbol name and the shared library user
program 314. In the server library 311, the wrapper function
executing unit 315 executes the wrapper function specified by
the acquired wrapper function pointer using the user function
symbol name and the serialized argument of the user function
as its argument.

As described above, the wrapper function acquires the user
function pointer using the shared library user program 314
and the user function symbol name. Moreover, the wrapper
function deserializes the serialized argument and acquires the
argument of the user function. The wrapper function executes
the user function specified by the user function pointer using
the acquired argument of the user function, serializes the
return value thereof, and returns the serialized return value as
the return value of the wrapper function.

The serialized return value is returned to the client 300 via
the communicating unit 312. In the client 300, the communi-
cating unit 309 receives the return value, and the deserializing
unit 308 deserializes the return value. Moreover, the deseri-
alized return value is returned to the user program 301.

Next, an overall operation of the first embodiment will be
described in detail with reference to FIGS. 3 and 4. First, the
user program 301 designates the shared library user program
302, and executes initialization (step 401 of FIG. 4).

By doing so, the client library 303 sends the shared library
user program 302 to the server 310 (step 411). The server
library 311 receives this (step 421) and registers the received
shared library user program in the server library 311 (step
422).

Next, the user program 301 transfers the user function
pointer and the argument to the client library 303 in order to
execute the user function at the server 310 (step 402). The
client library 303 receives these (step 412) and acquires the
user function symbol name using the user function pointer
(step 413).

Next, the client library 303 serializes the acquired argu-
ment (step 414). Then, the client library 303 acquires the
pointer to the wrapper function (step 415), and acquires the
wrapper function symbol name using the wrapper function
pointer (step 416). The client library 303 sends the user func-

US 9,116,855 B2

11

tion symbol name, the serialized argument, and the wrapper
function symbol name to the server 310 (step 417).

The server 310 receives the user function symbol name, the
serialized argument, and the wrapper function symbol name
(step 423). The server library 311 acquires the wrapper func-
tion pointer using the received wrapper function symbol
name and the shared library user program 314 (step 424), and
executes the wrapper function using the user function symbol
name and the serialized argument (step 425).

Within the executed wrapper function, first, the user func-
tion pointer is acquired based on the user function symbol
name and the shared library user program 314 (step 426).
Then, the serialized argument is deserialized, and the argu-
ment is reconstructed (step 427).

The wrapper function executes the user function using
these (step 428). The wrapper function serializes the return
value of the user function (step 429). The serialized return
value of the user function is returned as the return value of the
wrapper function. The server library 311 sends the serialized
return value of the user function to the client 300 (step 4210).

The client library 303 receives the serialized return value
(step 418), and deserializes this (step 419). Then, the client
library 303 returns the deserialized return value to the user
program 301 (step 403).

Next, the operations and effects of the first embodiment
described above will be described. In the first embodiment
described above, a wrapper function that internally calls a
user function having an optional type of argument and return
value is defined as a template function, the types of argument
and return value of the wrapper function itself are fixed, and
the wrapper function is called on the server 310 side. Due to
this, according to the first embodiment, it is possible to call
the user function having various types of argument and return
value on the server 310 side.

In the data processing system of the first embodiment
described above, an RPC is implemented in such a manner
that the user program 302 that is stored as a shared library on
the client 300 side and the symbol name of a called function
are sent from the client 300 to the server 310, the function
pointer to be called is acquired on the server 310 side using the
symbol name and the shared library user program 302, and
the user function is executed. Due to this, according to the first
embodiment, alanguage that is compiled as native codes such
as C or C++ is employed, and it is possible to describe the
RPC without using an IDL.

Further, according to the first embodiment, it is possible to
implement the RPC without separately describing a program
performed on the server 310 side and a program performed on
the client 300 side. The reason for this is because the server
310 receives the shared library user program 302 (314) using
the server library 311 that is not dependent on the user pro-
gram, and therefore a function defined within the user pro-
gram is executed on the server 310 side. Further, according to
the first embodiment, since it is not assumed that operations
are performed in the OS level, it can be implemented as a
library that operates on the existing OS without the need for
changing the OS, and usability thereof is high.

Second Embodiment

Next, a second embodiment will be described in detail with
reference to FIG. 5. A data processing system according to the
second embodiment has a hardware configuration as illus-
trated in FIG. 5. A client 500 includes at least one computer
501, a storage medium 502, and the like. A server 510
includes at least one computer 511, a storage medium 512,
and the like.

10

15

20

25

30

35

40

45

50

55

60

65

12

The computers 501 and 511 include central processing
units (CPUs), memories, input/output interface (I/F), and the
like, and they are connected to each other. The storage media
502 and 512 are media such as a hard disk, CD, DVD, Blu-ray
disc (trademark), or the like, for example. The storage media
502 and 512 store the user program 301, the shared library
user program 302, the client library 303, the server library
311, and the like, which are described above in the first
embodiment. The computers 501 and 511 read these pro-
grams stored in the storage media 502 and 512, execute the
read programs with CPUs, and thereby realizing the data
processing system according to the first embodiment
described above.

In the second embodiment, the user function symbol name
acquiring unit 304, the wrapper function pointer acquiring
unit 305, the wrapper function symbol name acquiring unit
306, the serializing unit 307, the deserializing unit 308, and
the communicating unit 309, which are included in the client
library 303 of the first embodiment, are implemented as soft-
ware elements. These software elements are realized when
modules included in the client library 303 or modules pro-
vided by the OS (not illustrated) of the computer 501 are
executed by the CPU, for example.

Moreover, in the second embodiment, the wrapper func-
tion executing unit 315, the wrapper function pointer acquir-
ing unit 313, the communicating unit 312, the user function
executing unit 319, the serializing unit 318, the deserializing
unit 317, and the user function pointer acquiring unit 316,
which are included in the server library 311 of the first
embodiment, are also implemented as software elements.
These software elements are realized when modules included
in the server library 311 or modules provided by the OS (not
illustrated) of the computer 511 are executed by the CPU, for
example.

Moreover, although it is not specified in the first embodi-
ment described above, compilers (including linkers or the
like) which are software that converts the user program 301,
the client library 303, the server library 311, and the like into
execution formats (native codes) are also stored in the com-
puter 501 or 511. When the respective processing units of the
first embodiment are implemented, these compilers are
executed by the computer 501 or 511.

Therefore, in the second embodiment, operation entities in
the description of the operation of the first embodiment (the
user program 301, the client library 303, the server library
311, the wrapper function, and the like) can be substituted
with the CPU. The same is true for the following examples.

Examples

Next, the operation of specific examples of the present
invention will be described with reference to FIGS. 6 to 14. In
this section, source codes that are described in the C or C++
language and executed on the Linux OS are illustrated as
examples. However, since the source code illustrated in the
respective figures is a part of a whole source code, the
described source code does not operate as it is.

A first example is illustrated in FIGS. 6 to 8. FIG. 6 illus-
trates a user program, FIG. 7 illustrates a client library, and
FIG. 8 illustrates a server library.

In the user program of FIG. 6, functions (user functions)
“userfuncl” and “userfunc2” are defined. These functions are
functions that are to be executed by a server. In the reference
example, the number and type of arguments of these func-
tions, and the type of the return value are fixed. Each function
of'the reference example is defined as a function that takes one
“int” type argument and returns an “int” type return value.

US 9,116,855 B2

13

Within the main(), first, the information on a server includ-
ing an IP address and the like is acquired to “server” which is
a Node-type variable. It is assumed that the Node type is
defined in a library.

Next, a function “init” is called, whereby initialization is
performed. A variable “server” and a file name of a shared
library user program are transferred to the function “init” as
the arguments thereof. That is, the functions “userfunc1” and
“userfunc2” are present as shared libraries in a file indicated
by this file name.

With a description “rpe(server, userfuncl, 1)” on the next
line, a function “userfunc1(1)” is called on the server side,
and the return value thereof is obtained as a return value of an
“rpc” function. In the case of this example, “2” is returned as
a return value. The function “userfunc2” is executed in the
same manner.

Next, the client library 303 will be described with reference
to FIG. 7. In the client library 303, a function “init” and a
function “rpc” are defined as functions that are called from a
user program.

When the “init” function is executed, a shared library user
program is sent to the server. Thus, within the “init” function,
first, a “connect_to_server” function is executed, whereby a
connection to the server is realized. In this example, this
function receives a Node-type variable, connects to a server
indicated by this Node-type variable, and then returns a file
descriptor that indicates a socket.

Next, a shared library user program designated by the file
name is read according to a “read_from_file” function. This
function reads the content of the file from the file, and writes
the read content in a memory area indicated by a “char” type
pointer given as a first argument. In this example, a statement
of a variable, allocation and release of memory are omitted.
Then, the number of the read byte is returned.

Next, a “write_to_socket” function sends the content of the
file to the server. This function sends data to the server by
designating a socket, a “char” type pointer in which data to be
sent is included, and a size thereof. Finally, a “‘close_connec-
tion” function is called. This function closes a socket created
by a “connect_to_server” function.

Next, an “rpc” function will be described. Since a
“get_symbol” function is used within the “rpc” function, first,
this will be described. The “get_symbol” function receives a
function pointer, and calls a “dladdr” function provided by the
OS to thereby acquire the symbol name of the function
pointer. The function pointer and a pointer to a “Dl_info” type
variable defined by the OS are transferred to the “dladdr”
function, whereby the symbol name of the function is
returned to a “dl_sname” member of the “DI_info” type vari-
able.

Next, the operation of the “rpc” function will be described.
The “rpc” function acquires the symbol name of the function
pointer given as an argument using the above-described
“get_symbol” function. Then, similarly to the above, the
“rpc” function connects to the server using the
“connect_to_server” function, and acquires a file descriptor
of a socket.

Moreover, first, the “rpc” function sends the user function
symbol name to the server, using a “write_to_socket” func-
tion. To do so, the file descriptor of the socket, and the user
function symbol name and the size thereof are given as the
arguments.

Next, the “rpc” function sends the argument to the server.
Therefore, the file descriptor, one obtained by casting the
arguments to a “char” type pointer, and a size of (int) (in this
example, an “int” type) are given as the arguments of the
“write_to_socket” function.

10

15

20

25

30

35

40

45

50

55

60

65

14

Next, the “rpc” function receives the execution result from
the server, using a “read_from_socket” function. This func-
tion takes the file descriptor of the socket and the “char” type
pointer, and receives the data of the execution result from the
server. Then, the “rpc” function casts a value received from
the server (the value of a variable “buf”) to an “int” type, and
sets the value to a variable “ret.” Finally, the “rpc” function
closes the socket with a “close_connection” function and
returns the value of the variable “ret” as a return value of the
“rpc” function.

Next, the operation of the server library will be described
with reference to FIG. 8.

First, in the server library, an “accept_connection” func-
tion accepts a connection from the client. In the example of
FIG. 8, this function establishes a connection in response to
execution of the “connect_to_server” function by the client.
This function returns the file descriptor of a socket as a return
value. A process may be forked for each connection, and a
separate process may be generated for each connection. In
this case, a parent process returns to execution of the
“accept_connection” function, and a child process performs
the following processes.

The server receives a shared library user program from the
client with a “read_from_socket” function using this connec-
tion. The “read_from_socket” function returns the number of
the read byte as a return value.

Next, a “write_to_file” function is called in order to write
the shared library user program read on the memory to a file.
This function designates a file name, and a pointer to a
memory area in which the shared library user program is read
and a size thereof, and writes the shared library user program
to a file indicated by the file name of the argument. In this
example, “/tmp/tmpfile.so” is designated as the file name of a
write destination.

Moreover, the shared library is opened by a “dlopen” func-
tion, which is a function provided by the OS. The file name of
the written file and a flag (in this example, RTLD_LLAZY) that
determines the operation of “dlopen” are designated in the
arguments. The return value of the “dlopen™ function is
“handle” which is used later.

Moreover, a “close_connection” function is called, and the
connection with the client is closed. After that, the server
executes a loop for receiving a request to execute a user
function from the client.

First, the server accepts a connection from the client with
the “accept_connection” function. In order to receive another
request of execution of a user function in parallel even during
execution of a certain user function, the following processes
for executing a user function may be performed in a separate
thread.

In this case, a parent thread returns to execution of the
“accept_connection” function, and the generated thread per-
forms the following processes. By using a thread rather than
a process, when a user function sets a value to a global
variable, for example, the value can be used from a user
function call that is called later.

Next, a user function symbol name is received with a
“read_from_socket” function. Further, the argument is
received with a subsequent “read_from_socket” function.
The argument is casted to an int-type. A subsequent “typedet”
defines the type of a called function as “functype.” In this
example, the “functype” is defined as a pointer to a function
that takes an “int” type value as its argument and returns an
“int” type value.

Then, the server acquires a pointer to a function that is to be
called by calling a “dlsym” function provided by the OS. The
argument of the “dlsym” function includes a handle that is

US 9,116,855 B2

15

obtained by executing a “dlopen” function and the symbol
name of the function. Since the pointer to a function is
obtained as a return value of the “dlsym” function, the pointer
is casted to a “functype” type variable and is assigned.

Then, the server gives the argument to the pointer to the
function, and executes the function. The return value of this
function is sent to the client with the “write_to_socket” func-
tion. Finally, the server closes the connection with the
“close_socket” function and returns to the beginning of the
loop.

Next, a second example will be described with reference to
FIGS. 9 to 14. FIG. 9 illustrates a user program, FIGS. 10 to
13 illustrate a client library, and FI1G. 14 illustrates a server
library.

First, the user program of FIG. 9 will be described.
Although this is substantially the same as that of the first
embodiment, in this example, the type of a function called on
the server and the number of arguments of the function can be
changed. That is, a “userfuncl” function is a function that
takes one “int” type argument and returns an “int” type value,
whereas a “userfunc2” function is a function that takes two
“double” type arguments and returns a “double” type value.

Moreover, as will be described later, in the second
example, although a “rpc” function is implemented as a tem-
plate function, it is not necessary to designate a data type like
“rpe<int, int>" when calling, since a compiler can infer the
data type.

Next, the client library will be described with reference to
FIGS. 10 to 13. FIGS. 10 and 11 illustrate a definition when
the number of arguments of a user function is one, and FIGS.
12 and 13 illustrate a definition when the number of argu-
ments of a user function is two.

As described above, in the second example, a plurality of
function definitions, corresponding to the number of argu-
ments of a user function, are prepared. Although this example
illustrates a case where the number of arguments is up to two,
a larger number of arguments may be accepted simply by
adding a definition having a larger number of arguments.

FIGS. 10 and 12 illustrate a definition of “wrapper”, which
is a wrapper function. FIGS. 11 and 13 illustrate a definition
of'an “rpc” function.

First, the “wrapper” function of FIG. 10 will be described.
The “wrapper” function is defined as a template function.
Since the example of FIG. 10 illustrates a definition in which
a function takes one argument, a data type “R” of a return
value of the user function and a data type “T1” of the argu-
ment are designated as a template argument.

The argument of the “wrapper” function includes “sym-
bol” in which the symbol name of the user function is set,
“handle” in which the handle obtained with the “dlopen”
function is set, “input” which is a serialized argument, and
“output” which is a serialized return value. Since the serial-
ized return value is created within the “wrapper” function and
returned to a caller, the “output” is a pointer argument.

An example described in the second example (based on the
library version 1.35) is the example of implementing a seri-
alization function using a serialization library that is provided
by a library group called a Boost.

The type of the variable “input” is “binary_iarchive,” the
type of the variable “output” is “binary_oarchive,” and these
types are the data types that the serialization library of the
Boost provides. The “binary_iarchive” type variable is used
in order to deserialize serialized data, and the “binary_oar-
chive” type variable is used in order to serialize variables.

Within the “wrapper” function, first, the type of a user
function is defined as “functype” using “typedef” In the
example of FIG. 10, “functype” is defined as a type such that
it takes a “T1” type argument and uses an “R” type as its

10

25

30

40

45

55

16

return value. Then, a “dlsym” function is called using “sym-
bol” in which the symbol name of the user function is set and
“handle” in which the handle obtained with the “dlopen”
function as its argument, whereby the user function pointer is
acquired. This is casted to a “functype” type and assigned to
a variable “f.”

Further, a variable “al” having a “T1” type which is a data
type of the argument and a variable “ret” having an “R” type
which is a data type of the return value are defined. Then, data
obtained by deserializing the variable “input”, which is the
argument, is assigned to the variable “al.” In the serialization
library of the Boost, this deserialization operation is defined
as ‘“>>>

Next, the user function “f” is executed using the variable
“al” as the argument, and the return value is stored in the
variable “ret.” Data obtained by serializing the variable “ret”
is input to the variable “output”, which becomes the return
value. In the serialization library of the Boost, this serializa-
tion operation is defined as “<<.”

Next, the “rpc” function will be described with reference to
FIG. 11. The “rpc” function is also defined as a template
function. Since the example of FIG. 11 illustrates a definition
in which the user function takes one argument, the data type
“R” of the return value of the user function and the data type
“T1” of the argument are designated as the template argu-
ment.

Although the argument of the “rpc” function is the same as
that of the first example, there is no limitation in a data type of
the argument since the “rpc” function is defined as the tem-
plate function. Within the “rpc” function, first, a wrapper
function pointer is acquired. In this case, the data type given
as the template argument is designated as “wrapper<R, T1>”
the wrapper function pointer corresponding to the data type is
acquired. A compiler creates a definition of the “wrapper”
function corresponding to the template argument “R, T1” at
the point in time that the wrapper function pointer is acquired.

Next, the symbol name of the wrapper function obtained
above is acquired. In this operation, the “get_symbol” func-
tion used in the first example is used. Next, the “get_symbol”
function is called using, as an argument, the user function
pointer given as the argument of the “rpc” function, whereby
the user function symbol name is acquired.

Then, the argument “al” is serialized. In the serialization
library of the Boost, when a serialized result is received as a
“string” type, a “binary_oarchive” type variable is defined
using, as an argument, an “ostringstream” type variable of a
standard library.

In this example, a variable “OS” having an “ostringstream”
type is defined, and that is used to define a variable “input”
having a “binary_oarchive” type. Then, as described above,
the argument “al” is serialized using “<<.”

Next, the “rpc” function connects to the server using the
“connect_to_server” function. The file descriptor of a socket
obtained with the “connect_to_server” function is given as an
argument to a “write_to_socket” function, whereby the user
function symbol name is sent.

Next, the serialized argument is sent. Since the serialized
result is set to the “ostringstream” type variable “os,” the
serialized result is taken first as a “string” type with a “str()”
member function, and is further taken as a “char” type pointer
with a “c_str()” member variable.

The size of the serialized result can be obtained by taking
that as a “string” type and calling a “length()” member
function. Then, the wrapper function symbol name is sent.
After that, the serialized return value is acquired with a
“read_from_socket” function.

US 9,116,855 B2

17

In order to deserialize the acquired data, a variable “is”
having an “istringstream” type of the standard library is
defined using, as an argument, one obtained by converting the
data into a “string” type. Then, a variable “output” having a
“binary_iarchive” type is defined using the variable “is” as an
argument.

A variable “ret” that stores the return value is defined, and
similarly to the above, the data obtained by deserializing the
variable “output” using “>>" is set to the variable “ret.”
Finally, the connection to the server is closed with the “clo-
se_connection” function, and the return value “ret” is
returned to the user program.

FIGS. 12 and 13 illustrate a definition in which the user
function takes two arguments. Hereinafter, the “wrapper”
function of FIG. 12 will be described, mainly in terms of a
difference from the definition in which the user function takes
one argument, illustrated in FIG. 10. In this case, the number
of template arguments is three in total which includes one
return value and two arguments.

Moreover, in the type of the user function, the number of
arguments is different. Therefore, deserialization of the argu-
ment is performed for two arguments, and the user function is
called using two arguments. The name of the function is
“wrapper.” Although it is the same as the case illustrated in
FIG. 10 where the number of arguments is one, this is per-
mitted in C++.

Next, the “rpc” function of FIG. 13 will be described,
mainly in terms of a difference from the definition in which
the user function takes one argument, illustrated in FIG. 11.
Similarly to the case of the “wrapper” function, the number of
template arguments is three in total which includes one return
value and two arguments.

Moreover, in terms of the arguments of the “rpc” function
itself, the type of the user function pointer is changed and an
argument of the user function is added since the number of
arguments of the user function is two. In the portion at which
the “wrapper” function pointer is acquired, the number of
template arguments is three. Then, in the portion at which the
arguments are serialized, two arguments are serialized.

As described above, it is possible to describe a definition of
the user function having three or more arguments by applying
changes such as a change from FIG. 10 to FIG. 12 and a
change from FIG. 11 to FIG. 13.

Next, the server library will be described with reference to
FIG. 14. The same server library is used regardless of the
number of arguments. The initialization portion is the same as
that of the first example.

Within a while sentence, first, a connection from the client
is accepted with “accept_connection” function. The symbol
of the user function and the serialized argument are acquired
from the client using the file descriptor of the socket obtained
here. Then, in order to create a “binary_iarchive” type vari-
able, an “istringstream” type variable “is” is defined using, as
an argument, data obtained by converting the acquired argu-
ment “buf” into a “string” type. Further, a “binary_iarchive”
type variable “input” is defined using the variable “is” as an
argument. This variable “input” is used later as an argument
of the “wrapper” function.

Next, the wrapper function symbol name is acquired from
the client. Based on this, a wrapper function pointer is
acquired using a “dlsym” function. Then, an “ostringstream”
type variable “o0s” is defined, and a “binary_oarchive” type
variable “output” is defined using the variable “0s” as an
argument. This variable “output™is used as an argument of the
“wrapper” function in order to receive the content that the
return value is serialized.

10

15

20

25

30

35

40

45

50

55

60

65

18

Then, the “wrapper” function is executed using a pointer to
the “wrapper” function acquired above. In this case, the user
function symbol name (“symbol”), a handle (“handle”)
obtained with the “dlopen” function, the “binary_iarchive”
type variable “input” that internally includes the serialized
argument, and a pointer to the “binary_oarchive” type vari-
able “output” that is for storing one that is serialized the return
value of the user function are given as the arguments of the
“wrapper” function.

When the wrapper function is executed, according to the
definition of the “wrapper” function described above, the
arguments are deserialized, the user function pointer is
acquired using the user function symbol name, the user func-
tion is executed using the deserialized arguments, and the
return value is serialized and assigned to the variable “out-
put.”

As a result, after the “wrapper” function is finished, the
content of the serialized return value is sent to the client. In
this case, “string” type data is taken from the “ostringstream”
type variable “os” with a “str()” member function, and a data
of a “char” type pointer is further taken with a “c_str()”
member function The size of the taken data is obtained by
calling a “length()” member function with respect to the
“string” type data taken with the member function “str()” of
the variable “o0s.” By calling a “write_to_socket” function
using these as an argument, whereby the content of the seri-
alized return value is sent to the client.

The present invention is not limited to the present embodi-
ments, and various modifications can be made without
departing from the spirit thereof. For example, the present
invention can be applied to applications that describe pro-
grams that are executed in parallel on a plurality of servers
connected via a network. Moreover, the present invention can
also be applied to applications that describe programs thatuse
resources (files or the like) on a separate server connected via
a network.

Obviously, the above-described embodiments and the plu-
rality of examples can be combined within a range where the
content does not conflict each other. Moreover, although the
programs and the like of the respective units have been
described in detail in the embodiments and examples
described above, the programs and the like can be changed in
various ways without departing from the scope of the present
invention.

This application is based upon and claims the benefit of
priority from Japanese patent application No. 2010-138398,
filed on Jun. 17, 2010, and the disclosure of which is incor-
porated herein in its entirety by reference.

The invention claimed is:

1. A data processing system comprising:

a client apparatus; and

a server apparatus,

wherein the client apparatus and the server apparatus com-
municate with each other,

wherein the client apparatus comprises at least one proces-
sor, the at least one processor being configured to imple-
ment:

a user function symbol name acquiring unit that acquires a
user function symbol name of an object pointed to by a
pointer to a user function of a user program, the user
function being compiled in a shared library and included
in a shared library user program;

a wrapper function generating unit that generates a
wrapper function of the user function from a pre-
determined template function based on a type and
number of one or more arguments of the user function
and a return value of the user function, the wrapper

US 9,116,855 B2

19

function being compiled in the shared library and
included in the shared library user program;

a first wrapper function pointer acquiring unit that
acquires a pointer to the wrapper function within the
shared library user program in the client apparatus;

a wrapper function symbol name acquiring unit that
acquires a wrapper function symbol name of the
wrapper function based on the pointer to the wrapper
function within the shared library user program in the

executes the user function using the user function
pointer and the reconstructed one or more arguments.

20

3. A computer apparatus comprising at least one processor,

the at least one processor being configured to implement:

a user function symbol name acquiring unit that acquires a
user function symbol name of an object pointed to by a
pointer to a user function of a user program, the user
program being compiled in a shared library and included
in a shared library user program;

a wrapper function generating unit that generates a wrap-
per function of the user function from a pre-determined

client apparatus; and 10 template function based on a type and number of one or
a first communicating unit that provides the server appa- more arguments of the user function and a return value of
ratus with the user function symbol name, data corre- the user function, the wrapper function being compiled
sponding to the one or more arguments of the user in the shared library and included in the shared library
function, the wrapper function symbol name, and the user program;
shared library user program, and a wrapper function pointer acquiring unit that acquires a
wherein the server apparatus comprises at least one pro- pointer to the wrapper function within the shared library
cessor, the at least one processor being configured to user program in the computer apparatus;
implement: a wrapper function symbol name acquiring unit that
a second communicating unit that acquires the user 20 acquires a wrapper function symbol name of the wrap-
function symbol name, data corresponding to the one per function based on the pointer to the wrapper function
or more arguments of the user function, the wrapper within the shared library user program in the computer
function symbol name, and the shared library user apparatus; and
program, which are provided by the client apparatus; a communicating unit that provides another computing
a second wrapper function pointer acquiring unit that 25 apparatus with the user function symbol name, data
acquires a pointer to the wrapper function within the corresponding to the one or more arguments of the user
shared library user program in the server apparatus function, the wrapper function symbol name, and the
based on the wrapper function symbol name acquired shared library user program.
by the second communicating unit; 4. A computer apparatus device comprising at least one
a user function pointer acquiring unit that acquires a 30 processor, the at least one processor being configured to
pointer to the user function within the shared library implement:
user program in the server apparatus based on the user a communicating unit that acquires a shared library user
function symbol name acquired by the second com- program including a user function of a user program and
municating unit; and a wrapper function, wherein a user function symbol
a wrapper function executing unit that executes the 35 name, data corresponding to one or more arguments of
wrapper function specified by the pointer to the wrap- the user function, and a wrapper function symbol name
per function within the shared library user program in are provided by another computer apparatus, the user
the server apparatus, function having been compiled in a shared library and
wherein the user function symbol name and the data included in the shared library user program by the
corresponding to the one or more arguments of the 40 another computer apparatus, the wrapper function hav-
user function are provided to the wrapper function as ing been generated from one template function from
arguments, the wrapper function acquires a pointer to among a plurality of template functions, the one tem-
the user function within the shared library user pro- plate function having been determined based on a type
gram in the server apparatus based on the user func- and number of one or more arguments of the user func-
tion symbol name and executes the user function 45 tion and a return value of the user function, and the
specified by the pointer to the user function within the wrapper function having been compiled in the shared
shared library user program in the server apparatus, library by the another apparatus;
and the data corresponding to the one or more argu- a wrapper function pointer acquiring unit that acquires a
ments of the user function being provided to the user pointer to the wrapper function within the shared library
function as arguments. 50 user program in the computer apparatus based on the
2. The data processing system according to claim 1, wrapper function symbol name acquired by the commu-
wherein the second communicating unit acquires serialized nicating unit; and
argument data from the client as the data corresponding to the a wrapper function executing unit that executes the wrap-
one or more arguments of the user function, per function specified by the pointer to the wrapper
wherein the user function pointer acquiring unit acquires a 55 function within the shared library user program in the
user function pointer to a user function within the shared computer apparatus,
library user program in the server apparatus that is to be wherein the user function symbol name and the data cor-
called, based on the shared library user program and the responding to the one or more arguments of the user
user function symbol name, both of which are acquired function are provided to the wrapper function as argu-
by the second communicating unit, and 60 ments, the wrapper function acquires a pointer to the
wherein the at least one processor of the server apparatus is user function within the shared library user program in
further configured to implement: a user function execut- the computer apparatus based on the user function sym-
ing unit that reconstructs the one or more arguments of bol name and executes the user function specified by the
the user function from the serialized argument data pointer to the user function within the shared library user
acquired by the second communicating unit, and 65 program in the computer apparatus, and the data corre-

sponding to the one or more arguments of the user func-
tion is provided to the user function as arguments.

US 9,116,855 B2

21

5. The computer device according to claim 4,

wherein the communicating unit acquires serialized argu-

ment data from the another computer device as the data

corresponding to the one or more arguments of the user
function,

wherein the wrapper function executing unit includes a

user function pointer acquiring unit and a user function

executing unit that are activated with the execution of the
wrapper function, and

wherein the wrapper function executing unit reconstructs

the one or more arguments of the user function from the
serialized argument data acquired by the communicat-
ing unit, and executes the user function using the user
function pointer and the reconstructed one or more argu-
ments.

6. A non-transitory computer-readable storage medium
with an executable program executed by a client and a server
that communicate with each other,

wherein the program causes the following to be imple-

mented in the client:

auser function symbol name acquiring unit that acquires
a user function symbol name of an object pointed to
by a pointer to a user function of a user program, the
user program being compiled in a shared library and
included in a shared library user program;

a wrapper function generating unit that generates a
wrapper function of the user function from a pre-
determined template function based on a type and
number of one or more arguments of the user function
and a return value of the user function, the wrapper
function being compiled in the shared library and
included in the shared library user program;

a first wrapper function pointer acquiring unit that
acquires a pointer to the wrapper function within the
shared library user program in the client;

a wrapper function symbol name acquiring unit that
acquires a wrapper function symbol name of the
wrapper function using the pointer to the wrapper
function within the shared library user program in the
client; and

a first communicating unit that provides the server with
the user function symbol name, data corresponding to
the one or more arguments of the user function, the
wrapper function symbol name, and the shared library
user program, and

wherein the program causes the following to be imple-

mented in the server:

a second communicating unit that acquires the user
function symbol name, data corresponding to the one
or more arguments of the user function, the wrapper
function symbol name, and the shared library user
program, which are provided by the client;

a second wrapper function pointer acquiring unit that
acquires a pointer to the wrapper function within the
shared library user program in the server based on the
wrapper function symbol name acquired by the sec-
ond communicating unit;

a user function pointer acquiring unit that acquires a
pointer to the user function within the shared library
user program in the server based on the user function
symbol name acquired by the second communicating
unit; and

a wrapper function executing unit that executes the
wrapper function specified by the pointer to the wrap-
per function within the shared library user program in
the server,

10

15

20

25

30

35

40

45

50

55

60

65

22

wherein the user function symbol name and the data
corresponding to the one or more arguments of the
user function being provided to the wrapper function
as arguments, the wrapper function acquires a pointer
to the user function within the shared library user
program in the server based on the user function sym-
bol name and executes the user function specified by
the pointer to the user function within the shared
library user program in the server, and the data corre-
sponding to the one or more arguments of the user
function is provided to the user function as arguments.
7. The non-transitory computer-readable storage medium
with an executable program according to claim 6, wherein the
second communicating unit acquires serialized argument
data from the client as the data corresponding to the one or
more arguments of the user function,
wherein the user function pointer acquiring unit acquires a
user function pointer to a user function within the shared
library user program in the server that is to be called,
based on the shared library user program and the user
function symbol name, both of which are acquired by the
second communicating unit, and
wherein the second user function executing unit recon-
structs the one or more arguments of the user function
from the serialized argument data acquired by the sec-
ond communicating unit, and executes the user function
using the acquired user function pointer and the recon-
structed one or more arguments.
8. A data processing method executed by a client and a
server that communicate with each other, the data processing
method comprising:
acquiring, by the client, a user function symbol name of an
object pointed to by a pointer to a user function of a user
program, the user function being compiled in a shared
library and included in a shared library user program;

generating, by the client, a wrapper function of the user
function from a pre-determined template function based
on a type and number of one or more arguments of the
user function and a return value of the user function, the
wrapper function being compiled in the shared library
and included in the shared library user program;

acquiring, by the client, a pointer to the wrapper function
within the shared library user program in the client;

acquiring, by the client, a wrapper function symbol name
of the wrapper function using the pointer to the wrapper
function within the shared library user program in the
client;

acquiring, by the server, the user function symbol name,

data corresponding to the one or more arguments of the
user function, the wrapper function symbol name, and
the shared library user program, which are provided by
the client;

acquiring, by the server, a pointer to the wrapper function

within the shared library user program in the server
based on the acquired wrapper function symbol name;
acquiring, by the server, a pointer to the user function
within the shared library user program in the server
based on the acquired user function symbol name; and
executing, by the server, the acquired wrapper function
specified by the pointer to the wrapper function within
the shared library user program in the server, the
acquired user function symbol name and the acquired
data corresponding to the one or more arguments of the
user function being provided to the wrapper function as
arguments, the wrapper function acquiring a pointer to
the user function within the shared library user program
in the server based on the acquired user function symbol

US 9,116,855 B2

23

name and executing the user function specified by the
pointer to the user function within the shared library user
program in the server, the acquired data corresponding
to the one or more arguments of the user function being
provided to the user function as arguments.

9. The data processing method according to claim 8,
wherein the data corresponding to the one or more arguments
of the user function is serialized argument data, and

wherein the executing the wrapper function comprises:

acquiring, by the server, a user function pointer to the
user function within the shared library user program
in the server that is to be called, based on the acquired
shared library user program and the acquired user
function symbol name;

reconstructing, by the server, the one or more arguments
of'the user function from the serialized argument data;
and

executing, by the server, the user function using the
acquired user function pointer and the reconstructed
one or more arguments.

#* #* #* #* #*

10

15

20

24

